Blogg

Derivation of the lightspeed and FTL signals

12.03.2014 20:33

Derivation of the lightspeed and FTL signals.docx (14,9 kB)

Derivation of the lightspeed and FTL signals
In this article I derive the lightspeed and the speed of FTL signals whit euclidean 4dimensional electromagnetism
In ordinary cases whit stationary transmitter
c2=1/(ϵ0μ0)    c=Em/Bm
Em=∫(ρ0max/ ϵ0)ds=(1/ ϵ0)∫(d3Qmax/(dr1dr2ds))ds=(1/ ϵ0)(d2Qmax/(dr1dr2))
Bm=μ0∫jmaxdr1= μ0∫(d2Imax/(dr1dr2))dr1=μ0dImax/dr2= μ0(d2Qmax/(dr2dT))
ρ0= d3Qmax/(dr1dr2ds)      j= d2Imax/(dr1dr2) 
where Em is the maximum value of the alternating electric field Bm is the maximum value of the alternating magnetic field Qmax is the maximum value of the charge and Imax is the maximum value of the current.
Em/ Bm=(1/ ϵ0)(d2Qmax/(dr1dr2))/ μ0(d2Qmax/(dr2dT))= 1/(ϵ0μ0)dT/dr1=c2dT/dr1    but  c=Em/Bm  so  c= c2dT/dr1    which means that  dr1/dT=c  
dr1 dr2 and ds are three independent (perpendicular) directions ds is also current direction in the antenna.
For rotating transmittor fields the lightspeed becomes
c’=dr1/dt= dr1/(dT√(1-v2/c2))=c/(√(1-v2/c2)) where v is the rotational velocity.
And for rotating and translating transmittor fields the lightspeed becomes
c’= dr’1/dt= dr1(√(1-v12/c2)/(dT√(1-(v1+v2)2/c2))=c(√(1-v12/c2)/( √(1-(v1+v2)2/c2)) where v1 is the translation velocity and v2 is the rotational velocity.
As you see is c’ often larger and sometimes smaller than c which corresponds whit the idea that it is possible to communicate whit any place in the 4space.

Derivation of the lightspeed and FTL signals.docx (14,9 kB)

Comparison between euclidean 4dimensional electromagnetism and common electromagnetism

12.03.2014 20:26

                                    Comparison between euclidian 4dimensional electromagnetism and common electromagnetism.docx (33 kB)

Comparison between euclidean 4dimensional electromagnetism and common electromagnetism
In this article I compare the equations for euclidean 4dimensional electromagnetism whit the equations for standard electromagnetism and introduces a way to do calculations in euclidean 4dimensionell elektromagnetism whit ordinary concentretic ring magnetic fields.
Constants:  µ0=4π10-7Vs/(Am)     c=2,99792458⦁108m/s    ϵ0=8,8542⦁10-12As/(Vm)
Where µ0 is the magnetical constant , ϵ0 is the electrical constant and c is the lightspeed in the Aether (vacuum).
µ0c2=1/ϵ0
B⫠x=Byz-Bzy=By⫠x+Bz⫠x
B⫠y=Bzx-Bxz=Bz⫠y+Bx⫠y
B⫠z=Bxy-Byx=Bx⫠z+By⫠z
Bx⫠y=-Bxz     Bx⫠z=Bxy 
By⫠x=Byz     By⫠z=-Byx 
Bz⫠x=-Bzy     Bz⫠y=Bzx 
Where B⫠x is the classical (ringformed) magnetic field in the x-direction , B⫠y is the classical (ringformed) magnetic field in the y-direction , B⫠z is the classical (ringformed) magnetic field in the z-direction , Bx⫠y is the classical magnetic field in the y-direction from currents flowing in x-direction , Bx⫠z is the classical magnetic field in the z-direction from currents flowing in x-direction , By⫠x is the classical magnetic field in the x-direction from currents flowing in y-direction , By⫠z is the classical magnetic field in the z-direction from currents flowing in y-direction , Bz⫠x is the classical magnetic field in the x-direction from currents flowing in z-direction , Bz⫠y is the classical magnetic field in the y-direction from currents flowing in z-direction.
Bxy=µ0∫jxdy    Bxz=µ0∫jxdz
Byx=µ0∫jydx    Byz=µ0∫jydz
Bzx=µ0∫jzdx    Bzy=µ0∫jzdy
ρ0=(d3Q)/(dxdydz)
jx=ρ0vx=(d2I)/(dydz)
jy=ρ0vy=(d2I)/(dxdz)
jz=ρ0vz=(d2I)/(dxdy)
Where vx is the x-component of the velocity , vy is the y-component of the velocity , vz is the z-component of the velocity , Q is the electrical charge and I is the current , ρ0 is the charge density , jx is the x-component of the current density , jy is the y-component of the current density , jz is the z-component of the current density , Bxy is the magnetic field (straight field lines) in the y-direction from currents flowing in x-direction , Bxz is the magnetic field (straight field lines) in the z-direction from currents flowing in x-direction , Byx is the magnetic field (straight field lines) in the x-direction from currents flowing in y-direction , Byz is the magnetic field (straight field lines) in the z-direction from currents flowing in y-direction , Bzx is the magnetic field (straight field lines) in the x-direction from currents flowing in z-direction , and Bzy is the magnetic field (straight field lines) in the y-direction from currents flowing in z-direction.

Euclidean 4dimensional electromagnetism (correct theory)
Bxct=μ0∫jxcdt     Byct=μ0∫jycdt     Bzct=μ0∫jzcdt
Esx/c=μ0∫(ρ0vt)dx     Esy/c=μ0∫(ρ0vt)dy     Esz/c=μ0∫(ρ0vt)dz
vx2+vy2+vz2+vt2=c2      c=(vx;vy;vz;vt)
jx2+jy2+jz2+(ρ0vt)2      ρ0c=(jx;jy;jz;ρ0vt)
(dx)2+(dy)2+(dz)2+(cdt)2=(cdT)2=(ds4)2
ds4=cdT=(dx;dy;dz;cdt)
Where vt is the velocity in the time dimension , ds4 is the smallest possible distance 4vector , dT is the smallest possible true time interval , dt is the smallest possible coordinate time interval , dx is the smallest possible distance vector in the x-direction , dy is the smallest possible distance vector in the y-direction , dz is the smallest possible distance vector in the z-direction , Bxct is the magnetic field in the time dimension from currents flowing in x-direction , Byct is the magnetic field in the time dimension from currents flowing in y-direction , Bzct is the magnetic field in the time dimension from currents flowing in z-direction , Esx/c is the electrostatic field/c in the x-direction , Esy/c is the electrostatic field/c in the y-direction and Esz/c is the electrostatic field/c in the z-direction.
Ex=vtEsx/c+∫(dEsx/(cdT))cdt-vyByx-∫(dByx/dT)dy-vzBzx-∫(dBzx/dT)dz=vtEsx/c+∫(dEsx/(cdT))cdt+vyBy⫠z+∫(dBy⫠z/dT)dy-vzBz⫠y-∫(dBz⫠y/dT)dz
Ey=vtEsy/c+∫(dEsy/(cdT))cdt-vxBxy-∫(dBxy/dT)dx-vzBzy-∫(dBzy/dT)dz=vtEsy/c+∫(dEsy/(cdT))cdt-vxBx⫠z-∫(dBx⫠z/dT)dx+vzBz⫠x+∫(dBz⫠x/dT)dz
Ez=vtEsz/c+∫(dEsz/(cdT))cdt-vxBxz-∫(dBxz/dT)dx-vyByz-∫(dByz/dT)dy=vtEsz/c+∫(dEsz/(cdT))cdt+vxBx⫠y+∫(dBx⫠y/dT)dx-vyBy⫠x-∫(dBy⫠x/dT)dy
Ect=vxBxct+∫(dBxct/dT)dx+vyByct+∫(dByct/dT)dy+vzBzct+∫(dBzct/dT)dz
E2=Ex2+Ey2+Ez2+Ect2      E=(Ex;Ey;Ez;Ect)
U=∫Exdx+∫Eydy+∫Ezdz+∫Ectcdt

Where E is the electric field , and Ex is the x-component of the electric field , Ey is the y-component of the electric field , Ez is the z-component of the electric field , and Ect is the electric field component in the time dimension , and U is the scalar electrical potential.
As you sees from this theory it exists two totally different principles to construct time (zero point) energy converters , the first principle is anti lenz induction; you only uses the magnetic field that gives the induction while the magnetic fieldt that gives the lenz law is removed or better yet reversed so that the induction increases its own cause (devices that uses this principle; anti lenz unipolar, anti lenz synchron, anti lenz asynchron , corbino effekt MEG , SEG(searl effect generator)?). The other principle is based on the fact that the electrostatic field is a function of the time velocity of the charges and that particles whit space velocity gets lower time velocity , so that around a circuit an electrostatic field is present when it goes a current trough it even if it is the same amount of positive as negative elementary charges in the circuit and even if the current is constant and neither circuit nor observer is in motion (to get the phenomenon to be used for energy production the current must be a function of time (alternating current)so you get an alternating field)(devices that uses this principle for energy production: tesla MEG, ark of the Covenant, Great Pyramid(when it was in operation (it is possible that the ark of the Covenant was the central time (zero point) energy converter that powered it.)),wardenclyffe tower (maybe in combination whit tesla MEG). Devices that uses this principle to change their masses: UFO inertial damper and hyperdrive and stargates (these howewer whit direct current to get a constant very strong negative electrical potential to reduce the mass and cancel the inner potential of the matter  to acces hyperspace)(positive potential at the recieving stargate.(more about this in Electrogravitation , Supplement to euclidean 4dimensional electromagnetism and electrogravitation and The hyperspace theory.)(SEG is possibly using this principle for inertial dampening)
(It is possible that SEG uses both principles for energy production or uses anti lenz induction for energy production and electrostatic field because of high current-speeds for inertial dampening).


Classical electromagnetism (wrong theory)
I will here present the equations for classical electromagnetism in integral and component form and show the errors that makes them useless to use to construct time (zero point) energy converters. I will mark correct parts of the theory whit green , completely wrong parts whit red and approximations whit purple
Esx=∫(ρ0/ϵ0)dx      Esy=∫(ρ0/ϵ0)dy     Esz=∫(ρ0/ϵ0)dz     
( the formulas above is only valid when the charges stands still( in space dimensions))
Ex=∫(ρ0/ϵ0)dx+vyB⫠z+∫(dB⫠z/dT)dy-vzB⫠y-∫(dB⫠y/dT)dz=∫(ρ0/ϵ0)dx+vy(Bxy-Byx)+∫(d(Bxy-Byx)/dT)dy-vz(Bzx-Bxz)-∫(d(Bzx-Bxz)/dT)dz=∫(ρ0/ϵ0)dx-vyByx-∫(dByx/dT)dy-vzBzx-∫(dBzx/dT)dz+vyBxy+∫(dBxy/dT)dy+vzBxz+∫(dBxz/dT)dz==∫(ρ0/ϵ0)dx+vyBy⫠z+∫(dBy⫠z/dT)dy-vzBz⫠y-∫(dBz⫠y/dT)dz+vyBx⫠z+∫(dBx⫠z/dT)dy-vzBx⫠y-∫(dBx⫠y/dT)dz

Ey=∫(ρ0/ϵ0)dy-vxB⫠z-∫(dB⫠z/dT)dx+vzB⫠x+∫(dB⫠x/dT)dz=∫(ρ0/ϵ0)dy-vx(Bxy-Byx)-∫(d(Bxy-Byx)/dT)dx+vz(Byz-Bzy)+∫(d(Byz-Bzy)/dT)dz=∫(ρ0/ϵ0)dy-vxBxy-∫(dBxy/dT)dx-vzBzy-∫(dBzy/dT)dz+vxByx+∫(dByx/dT)dx+vzByz+∫(dByz/dT)dz==∫(ρ0/ϵ0)dy-vxBx⫠z-∫(dBx⫠z/dT)dx+vzBz⫠x+∫(dBz⫠x/dT)dz-vxBy⫠z-∫(dBy⫠z/dT)dx+vzBy⫠x+∫(dBy⫠x/dT)dz
Ez=∫(ρ0/ϵ0)dz+vxB⫠y+∫(dB⫠y/dT)dx-vyB⫠x-∫(dB⫠x/dT)dy=∫(ρ0/ϵ0)dz+vx(Bzx-Bxz)+∫(d(Bzx-Bxz)/dT)dx-vy(Byz-Bzy)-∫(d(Byz-Bzy)/dT)dy=∫(ρ0/ϵ0)dz-vxBxz-∫(dBxz/dT)dx-vyByz-∫(dByz/dT)dy+vxBzx+∫(dBzx/dT)dx+vyBzy+∫(dBzy/dT)dy==∫(ρ0/ϵ0)dz+vxBx⫠y+∫(dBx⫠y/dT)dx-vyBy⫠x-∫(dBy⫠x/dT)dy+vxBz⫠y+∫(dBz⫠y/dT)dx-vyBz⫠x-∫(dBz⫠x/dT)dy
The purple formulas above is only perfectly  valid for stillstanding(in space) charges (an approximation , because of this approximation you misses the possibility of time (zero point) energy converters of the tesla MEG type (ark of the Covenant))
The green formulas is correct and is the same as in euclidean 4dimensional electromagnetism
The red formulas is completely wrong and not valid at all (Because of thes formulas it has been believed that lenz law is unavoidable and that time (zero point) energy converters of anti lenz induction type is impossible)

Esx is the electrostatic field in the x-direction according to classical electromagnetism , Esy is the electrostatic field in the y-direction according to classical electromagnetism , and Esz is the electrostatic field in the z-direction according to classical electromagnetism.
U=∫Exdx+∫Eydy+∫Ezdz
E2=Ex2+Ey2+Ez2      E=(Ex;Ey;Ez)
You have here missed an entire dimension
Conclusions
You have in classical electromagnetism completely missed the 4:th dimension and completely missed that it is motion trough the 4:th dimension that causes electrostatic fields you have also missed that this dimension the time dimension carries infinite amounts of energy that can be used to create heaven on earth. You don´t understand electric fields whit classical electromagnetism , whit euclidean 4dimensional electromagnetism you understand that electromagnetical fields is generated by charged particles that moves in the 4dimensional spacetime , magnetic fields by motion in space and electrostatic fields by motion in time! This is not understandable whit classical electromagnetism. Further so it becomes clear whit the staight magnetic field lines that the induction and the lenz law comes from different magnetic fields (in classical electromagnetism whit the concentretic ring magnetic fields you adds fields from currents in different directions and believe that they become equivalent and have the same properties altough they really are different fields and don´t have the same properties (It is on this way we missed the anti lenz induction)) and that is therefore possible to construct time (zero point) energy converters based on anti lenz induction. Further euclidean 4dimensional electromagnetism explains where the extra energy comes from; from the time dimension. (that the classical electromagnetismen have completely missed)
I hope that this article together whit the rest of my work should make you starting to use my equations instead of classical electromagnetism so that we can reshape the world into an utopian science fiction similiar paradise whit help of the time dimension.
(God vas the ancient name for the time dimension , that the ark of the Covenant was in contact whit God in reality means that the ark of the Covenant was a very powerful time (zero point) energy converter).

Comparison between euclidian 4dimensional electromagnetism and common electromagnetism.docx (33 kB)

Artificiell gravitation

12.03.2014 20:19

Artificiell gravitation                                     Artificiell gravitation.docx (13,1 kB)
Gravitation är egentligen ingen kraft utan uppstår av att kraft och reaktionskraft inte tar helt ut varandra på grund av att massan har ändrats hos den ena partikeln på grund av inducerad potential. Alla krafter är ytterst av elektromagnetisk natur. Här kommer ekvationen för gravitation g0=F1ΔU/(m0tU0) där g0 är accelerationen som systemet upplever då det anser sig ha normalmassa F1 är den kraft som ger upphov till fältet, ΔU är spänningen mellan punkterna där kraft och motkraft verkar, m0t är systemets totalnormalmassa, U0 är eterns bakgrundspotential man kan också beräkna g som är den sanna accelerationen som systemet upplever g=F1ΔU/(mtU0) där mt=m0t(Uind+U0)/U0 där mt är systemets totalmassa och Uind är den inducerade genomsnittspotentialen för systemet.
Formlerna härleds så här F1=-F2  F1=m01a1 , F1=m02a2   m1=m01(Uind1+U0)/U0  m2=m02(Uind2+U0)/U0
Frest=m1a1+m2a2= m01a1(Uind1+U0)/U0+ m02a2(Uind2+U0)/U0= F1(Uind1+U0)/U0+ F2(Uind2+U0)/U0= F1Uind1/U0+F1+ F2Uind2/U0+F2= F1Uind1/U0-F1 Uind2/U0=F1(Uind1-Uind2)/U0=F1ΔU/U0     g= Frest/ mt= F1ΔU/(mtU0)     och Uind=(∑m0nUindn)/m0t samt Frest=m0tg0=mtg
Där Frest är gravitationskraften(saknar motkraft) m1 är massan hos partikel1, m2 är massan hos partikel2, F1 är kraften på partikel1
F2 är kraften på partikel2 (och även F1 s reaktionskraft), Uind1 är den inducerade potentialen vid partikel1, ), Uind2 är den inducerade potentialen vid partikel2, ), Uindn är den inducerade potentialen vid partikel n, m0n är normalmassan hos partikel n, m01 är normalmassan hos partikel1, m02 är normalmassan hos partikel2
Dessa ekvationer förklarar hur UFOn kan flyga i normalrymd samt förklarar varför man inte är tyngdlös i ett UFO ekvationerna kan användas för att konstruera artificiella gravitationsfält F1 och F2 är krafter av elektromagnetisk natur.

Artificiell gravitation.docx (13,1 kB)

 

Objekt: 79 - 81 av 85
<< 25 | 26 | 27 | 28 | 29 >>