Blogg

Tillägg till euklidisk 4dimmensionell elektromagnetism och elektrogravitation

02.05.2014 22:13
 
Tillägg till euklidisk 4dimmensionell elektromagnetism och elektrogravitation
Här kommer det lite fler formler som ingår i min enade fältteori och som kan behövas då man konstruerar UFOn och antilenzgeneratorer
Wx+Wy+Wz+Wct=W   där W  är rumtidsenergin och Wx är energin i x-led , Wy är energin i z-led , Wz är energin i z-led och Wct är energin i tidsdimensionen 
W=∭(ρ0U)dxdydz=∭(¤c2)dxdydz    ρ0U=¤c2 där ρ0 är laddningstätheten och ¤ är masstätheten U är den elektriska rumtidspotentialen och c är normalljushastigheten
F2=Fx2+Fy2+Fz2+Fct2 där F är kraften och Fx är kraftens x-komposant , Fy är kraftens y-komposant , Fz är kraftens z-komposant och Fct är kraftens komposant i tidsdimensionen
Fx=dWx/dx     Fy=dWy/dy     Fz=dWz/dz     Fct=dWct/(cdt)
P=Px+Py+Pz+Pct=(d3W)/(dxdydz)=ρ0U=¤c2 där P är totaltrycket i området (rumtidsenergin/volymen) och Px är trycket(kraften/area) i x-led , Py är trycket(kraften/area) i y-led , Pz är trycket(kraften/area) i z-led och Pct är tidstrycket(tidsenergin/volym) i tidsdimensionen.
Px=d2Fx/(dydz)=d3Wx/(dxdydz)=ρ0Ux=∫(ρ0Ex)dx=∫(ρ0(vtEsx/c+∫(dEsx/(cdT))cdt-∫(dByx/dT)dy-∫(dBzx/dT)dz)dx-∫(jyByx)dx-∫(jzBzx)dx
Py=d2Fy/(dxdz)=d3Wy/(dxdydz) =ρ0Uy=∫(ρ0Ey)dy=∫(ρ0(vtEsy/c+∫(dEsy/(cdT))cdt-∫(dBxy/dT)dx-∫(dBzy/dT)dz)dy-∫(jxBxy)dy-∫(jzBzy)dy
 
Pz=d2Fz/(dxdy)=d3Wz/(dxdydz) =ρ0Uz=∫(ρ0Ez)dz=∫(ρ0(vtEsz/c+∫(dEsz/(cdT))cdt-∫(dByz/dT)dy-∫(dBxz/dT)dx)dz-∫(jxBxz)dz-∫(jyByz)dz
 
Pct=(d2Fctcdt)/(dxdydz)=d3Wct/(dxdydz) =ρ0Uct=∫(ρ0Ect)cdt=∫(ρ0(∫(dBxct/dT)dx +∫(dByct/dT)dy+∫(dBzct/dT)dz)cdt+∫(jxBxct)cdt+∫(jyByct)cdt+∫(jzBzct)cdt
 
Fx=∬Pxdydz=∬(ρ0Ux)dydz=∭(ρ0Ex)dxdydz=∭(ρ0(vtEsx/c+∫(dEsx/(cdT))cdt-∫(dByx/dT)dy-∫(dBzx/dT)dz)dxdydz-∭(jyByx)dxdydz-∭(jzBzx)dxdydz
 
Fy=∬Pydxdz=∬(ρ0Uy)dxdz=∭(ρ0Ey)dxdydz=∭(ρ0(vtEsy/c+∫(dEsy/(cdT))cdt-∫(dBxy/dT)dx-∫(dBzy/dT)dz)dxdydz-∭(jxBxy)dxdydz-∭(jzBzy)dxdydz
 
Fz=∬Pzdxdy=∬(ρ0Uz)dxdy=∭(ρ0Ez)dxdydz=∭(ρ0(vtEsz/c+∫(dEsz/(cdT))cdt-∫(dByz/dT)dy-∫(dBxz/dT)dx)dxdydz-∭(jxBxz)dxdydz-∭(jyByz)dxdydz
 
Fct=∬Pctdxdydz/(cdt)=∬(ρ0Uct)dxdydz/(cdt)=∭(ρ0Ect)dxdydz=∭(ρ0(∫(dBxct/dT)dx +∫(dByct/dT)dy+∫(dBzct/dT)dz)dxdydz+∭(jxBxct)dxdydz+∭(jyByct)dxdydz+∭(jzBzct)dxdydz
Där jx är strömtäthetens komposant i x-led , jy är strömtäthetens komposant i y-led , jz är strömtäthetens komposant i z-led och vt är tidshastigheten (vt2=c2-vx2-vy2-vz2).
g2=gx2+gy2+gz2+gct2
gx=(dPxΔU)/(¤dxU0)     gy=(dPyΔU)/(¤dyU0)    gz=(dPzΔU)/(¤dzU0)     gct=(dPctΔU)/(¤cdtU0)
Där g är gravitationsfältet och gx är gravitationsfältets x-komposant , gy är gravitationsfältets y-komposant , gz är gravitationsfältets z-komposant och gct är gravitationsfältets komposant i tidsdimensionen. ΔU är spänningen mellan de punkter där kraft och motkraft verkar och U0 är eterns bakgrundspotential (materiens inre genomsnittspotential) som beräknas så här W0=∑(QU)     ∑(Q(U-U0))=0    
 ∑(Q(U+Uind))=(∑(QU))((U0+Uind)/U0)=W0((U0+Uind)/U0)
+0,65GV≤U0≤+1,1GV (exakt värde ej uppmätt kan möjligen även vara olika för olika material) W0 är normalrumtidsenergin och Uind är den alstrade potentialen
Fg2=Fgx2+Fgy2+Fgz2+Fgct2
Fgx=∭(¤gx)dxdydz=∬((PxΔU)/U0)dydz=∬Pgxdydz
Fgy=∭(¤gy)dxdydz=∬((PyΔU)/U0)dxdz=∬Pgydxdz
Fgz=∭(¤gz)dxdydz=∬((PzΔU)/U0)dxdy=∬Pgzdxdy
Fgct=∭(¤gct)dxdydz=∬((PctΔU)/U0)dxdydz/(cdt)=∬Pgctdxdydz/(cdt)
Där Fg är gravitationskraften (som är en enkelriktad kraft utan motkraft (om härledningen av gravitationskraften kan du läsa i ”artificiell gravitation”) det ser du enkelt genom att gravitationskraften uppstår mellan kraft och motkraftpar av elektromagnetisk natur där det finns en potentialskillnad mellan punkterna där kraft och motkraft verkar om du byter kraft mot motkraft så multiplicerar du med -1 men då byter också ΔU tecken så att du multiplicerar (-1)2=1 alltså blir Fg åt samma håll vid båda punkterna (saknar motkraft) så att den kan användas till UFO framdrivning) och Fgx är gravitationskraftens x-komposant , Fgy är gravitationskraftens y-komposant , Fgz är gravitationskraftens z-komposant och Fgct är gravitationskraftens komposant i tidsdimensionen.
Pgx+Pgy+Pgz+Pgct=Pg=(PxΔU)/U0+(PyΔU)/U0+(PzΔU)/U0+(PctΔU)/U0=(PΔU)/U0=(d3W/(dxdydz))ΔU/U0=ρ0UΔU/U0=¤c2ΔU/U0=(d3Wg)/(dxdydz)
Pgx=d2Fgx/(dydz)=d3Wgx/(dxdydz)=∫(¤gx)dx=(PxΔU)/U0
Pgy=d2Fgy/(dxdz)=d3Wgy/(dxdydz)=∫(¤gy)dy=(PyΔU)/U0
Pgz=d2Fgz/(dxdy)=d3Wgz/(dxdydz)=∫(¤gz)dz=(PzΔU)/U0
Pgct=(d2Fgxcdt)/(dxdydz)=d3Wgct/(dxdydz)=∫(¤gct)cdt=(PctΔU)/U0
Där Pg är det totala gravitationella trycket (gravitationsenergi/volym) och
Pgx är det gravitationella trycket (gravitationskraft/area) i x-led , Pgy är det gravitationella trycket (gravitationskraft/area) i y-led , Pgz är det gravitationella trycket (gravitationskraft/area) i z-led och Pgct är det gravitationella trycket (gravitationsenergi i tidsdimensionen/volym) i tidsdimensionen
Wgx+Wgy+Wgz+Wgct=Wg=∭Pgdxdydz=∭(¤c2ΔU/U0)dxdydz
Wgx=∫Fgxdx=∭Pgxdxdydz
Wgy=∫Fgydy=∭Pgydxdydz
Wgz=∫Fgzdz=∭Pgzdxdydz
Wgct=∫Fgctcdt=∭Pgctdxdydz
Där Wg är den gravitationella rumtidsenergin ( i och med att ΔU finns med i ekvationen så verkar det som att gravitationsenergin är en energiändring där energi utväxlas mellan detta 4rum och andra 4rum(överdimensioner hyperrymd)) Wgx är den gravitationella energin i x-led , Wgy är den gravitationella energin i y-led , Wgz är den gravitationella energin i z-led och Wgct är den gravitationella energin i tidsdimensionen.
Pg/P=(d3Wg)/(d3W)=ΔU/U0
Hoppas att denna artikel tillsammans med euklidisk 4dimensionell elektromagnetism och elektrogravitation och hyperrymdsteorin gör att ni har tillräkligt med information för att bygga tidsenergiomvandlare UFOn och dimensionsportaler samt att ni vet hur universum verkligen fungerar.
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplement to euclidean 4dimensional electromagnetism and electrogravitation

02.05.2014 21:49
 
Supplement to euclidean 4dimmensional electromagnetism and electrogravitation
Here comes some more formulas that is included in my unified field theory and that may be needed when you are constructing UFOs and antilenz generators.
Wx+Wy+Wz+Wct=W   where W  is the spacetime energy and Wx is the energy in  x-direction , Wy is the energy in y-direction , Wz is the energy in z-direction och Wct is the energy in the time dimension. 
W=∭(ρ0U)dxdydz=∭(¤c2)dxdydz    ρ0U=¤c2 where ρ0 is the charge density and ¤ is the mass density, U is the electrical spacetime potential and c is the normal lightspeed.
F2=Fx2+Fy2+Fz2+Fct2 where F is the force and Fx is the x-component of the force , Fy is the y-component of the force , Fz is the z-component of the force and Fct is the force component in the time dimension.
Fx=dWx/dx     Fy=dWy/dy     Fz=dWz/dz     Fct=dWct/(cdt)
P=Px+Py+Pz+Pct=(d3W)/(dxdydz)=ρ0U=¤c2 where P is the total pressure in the area ((spacetime energy)/volume) and Px is the pressure(force/area) in x-direction , Py is the pressure(force/area) in y-direction , Pz is the pressure(force/area) in z-direction and Pct is the time pressure((time energy)/volume) in the time dimension.
Px=d2Fx/(dydz)=d3Wx/(dxdydz)=ρ0Ux=∫(ρ0Ex)dx=∫(ρ0(vtEsx/c+∫(dEsx/(cdT))cdt-∫(dByx/dT)dy-∫(dBzx/dT)dz)dx-∫(jyByx)dx-∫(jzBzx)dx
Py=d2Fy/(dxdz)=d3Wy/(dxdydz) =ρ0Uy=∫(ρ0Ey)dy=∫(ρ0(vtEsy/c+∫(dEsy/(cdT))cdt-∫(dBxy/dT)dx-∫(dBzy/dT)dz)dy-∫(jxBxy)dy-∫(jzBzy)dy
 
Pz=d2Fz/(dxdy)=d3Wz/(dxdydz) =ρ0Uz=∫(ρ0Ez)dz=∫(ρ0(vtEsz/c+∫(dEsz/(cdT))cdt-∫(dByz/dT)dy-∫(dBxz/dT)dx)dz-∫(jxBxz)dz-∫(jyByz)dz
 
Pct=(d2Fctcdt)/(dxdydz)=d3Wct/(dxdydz) =ρ0Uct=∫(ρ0Ect)cdt=∫(ρ0(∫(dBxct/dT)dx +∫(dByct/dT)dy+∫(dBzct/dT)dz)cdt+∫(jxBxct)cdt+∫(jyByct)cdt+∫(jzBzct)cdt
 
Fx=∬Pxdydz=∬(ρ0Ux)dydz=∭(ρ0Ex)dxdydz=∭(ρ0(vtEsx/c+∫(dEsx/(cdT))cdt-∫(dByx/dT)dy-∫(dBzx/dT)dz)dxdydz-∭(jyByx)dxdydz-∭(jzBzx)dxdydz
 
Fy=∬Pydxdz=∬(ρ0Uy)dxdz=∭(ρ0Ey)dxdydz=∭(ρ0(vtEsy/c+∫(dEsy/(cdT))cdt-∫(dBxy/dT)dx-∫(dBzy/dT)dz)dxdydz-∭(jxBxy)dxdydz-∭(jzBzy)dxdydz
 
Fz=∬Pzdxdy=∬(ρ0Uz)dxdy=∭(ρ0Ez)dxdydz=∭(ρ0(vtEsz/c+∫(dEsz/(cdT))cdt-∫(dByz/dT)dy-∫(dBxz/dT)dx)dxdydz-∭(jxBxz)dxdydz-∭(jyByz)dxdydz
 
Fct=∬Pctdxdydz/(cdt)=∬(ρ0Uct)dxdydz/(cdt)=∭(ρ0Ect)dxdydz=∭(ρ0(∫(dBxct/dT)dx +∫(dByct/dT)dy+∫(dBzct/dT)dz)dxdydz+∭(jxBxct)dxdydz+∭(jyByct)dxdydz+∭(jzBzct)dxdydz
Where jx is the x-component of the current density , jy is the y-component of the current density , jz is the z-component of the current density and vt is the time velocity (vt2=c2-vx2-vy2-vz2).
g2=gx2+gy2+gz2+gct2
gx=(dPxΔU)/(¤dxU0)     gy=(dPyΔU)/(¤dyU0)    gz=(dPzΔU)/(¤dzU0)     gct=(dPctΔU)/(¤cdtU0)
Where g is the gravitational field and gx is the x-component of the gravitational field , gy is the y-component of the gravitational field , gz is the z-component of the gravitational field and gct is the gravitational field component in the time dimension. ΔU is the voltage between the points where force and counterforce acts and U0 is the background potential of the Aether (the average inner potential of the matter) and is calculated as follows: W0=∑(QU)     ∑(Q(U-U0))=0    
 ∑(Q(U+Uind))=(∑(QU))((U0+Uind)/U0)=W0((U0+Uind)/U0)
+0,65GV≤U0≤+1,1GV (exact value have’nt been measured can possibly be different for different materials) W0 is the normal spacetime energy and Uind is the induced potential.
Fg2=Fgx2+Fgy2+Fgz2+Fgct2
Fgx=∭(¤gx)dxdydz=∬((PxΔU)/U0)dydz=∬Pgxdydz
Fgy=∭(¤gy)dxdydz=∬((PyΔU)/U0)dxdz=∬Pgydxdz
Fgz=∭(¤gz)dxdydz=∬((PzΔU)/U0)dxdy=∬Pgzdxdy
Fgct=∭(¤gct)dxdydz=∬((PctΔU)/U0)dxdydz/(cdt)=∬Pgctdxdydz/(cdt)
Where Fg is the gravitational force (that is an unidirectional force whitout counterforce (you can read about the derivation of the gravitational force in ”artificial gravitation”) you can easyli see it by that the gravitational force occurs between force and counterforce pairs of electromagnetic nature where it exists a potential difference between the points where force and counterforce acts (if you change force against counterforce you multiplicate whit -1 but then ΔU also changes sign so that you multiplicate whit (-1)2=1 thus Fg is in the same direction at both points (lacks counterforce) so that it could be used to UFO propulsion) and Fgx is the x-component of the gravitational force , Fgy is the y-component of the gravitational force , Fgz is the z-component of the gravitational force and Fgct is the gravitational force component in the time dimension.
Pgx+Pgy+Pgz+Pgct=Pg=(PxΔU)/U0+(PyΔU)/U0+(PzΔU)/U0+(PctΔU)/U0=(PΔU)/U0=(d3W/(dxdydz))ΔU/U0=ρ0UΔU/U0=¤c2ΔU/U0=(d3Wg)/(dxdydz)
Pgx=d2Fgx/(dydz)=d3Wgx/(dxdydz)=∫(¤gx)dx=(PxΔU)/U0
Pgy=d2Fgy/(dxdz)=d3Wgy/(dxdydz)=∫(¤gy)dy=(PyΔU)/U0
Pgz=d2Fgz/(dxdy)=d3Wgz/(dxdydz)=∫(¤gz)dz=(PzΔU)/U0
Pgct=(d2Fgxcdt)/(dxdydz)=d3Wgct/(dxdydz)=∫(¤gct)cdt=(PctΔU)/U0
Where Pg is the total gravitational pressure ((gravitational energy)/volume) and
Pgx is the gravitational pressure ((gravitational force)/area) in x-direction , Pgy is the gravitational pressure ((gravitational force)/area) in y-direction , Pgz is the gravitational pressure ((gravitational force)/area) in z-direction and Pgct is the gravitational pressure ((gravitational energy in the time dimension)/volume) in the time dimension.
Wgx+Wgy+Wgz+Wgct=Wg=∭Pgdxdydz=∭(¤c2ΔU/U0)dxdydz
Wgx=∫Fgxdx=∭Pgxdxdydz
Wgy=∫Fgydy=∭Pgydxdydz
Wgz=∫Fgzdz=∭Pgzdxdydz
Wgct=∫Fgctcdt=∭Pgctdxdydz
Where Wg is the gravitational spacetime energy ( because ΔU is part of the formula it seems that the gravitational energy is some sort of energy change where energy is transfered between this 4space and other 4space(overdimensions, hyperspace)) Wgx is the gravitational energy in x-direction , Wgy is the gravitational energy in y-direction , Wgz is the gravitational energy in z-direction and Wgct is the gravitational energy in the time dimension.
Pg/P=(d3Wg)/(d3W)=ΔU/U0
I hope that this article together whit euclidean 4dimensional electromagnetism and electrogravitation and the hyperspace theory gives you enough information to build time (zero point) energy converters, UFOs and stargates. And that you really knows how the universe works.
 
 
 
 
 
 
 
 
 
 
 
 
 

The hyperspace theory

02.05.2014 21:22
 
The hyperspace theory
It exists parallel universes(4spaces) whit higher lightspeed than our own. In these universes the standard lightspeed and 4velocity is c’= Nc where c is the standard lightspeed (in our 4space) and N is an integer called the hyper- factor (which is 1 in our universe).   4velocity in our universe(4space): In our 4space the following is true:
vx2+vy2+vz2+vt2=c2       c=(vx;vy;vz;vt)
in corresponding way the following is true for the parallel universes:
v’x2+v’y2+v’z2+v’t2=c’2=N2c2        c’=Nc=(v’x;v’y;v’z;v’t)
hence it follows that if the 4velocity has the same direction in our universe as in the parallel universe (which it becomes for an object that is transferred to hyperspace) the following is true:
v’x/vx=v’y/vy=v’z/vz=v’t/vt=c’/c=N 
hence it follows that: v’x=Nvx   v’y=Nvy   v’z=Nvz   v’t=Nvt   where v’x is the x-component of the 4velocity in the parallel universe , v’y is the y-component of the 4velocity in the parallel universe , v’z is the z-component of the 4velocity in the parallel universe and v’t is the 4velocity-component in the time dimension in the parallel universe.
 vx is the x-component of the 4velocity in our universe , vy is the y-component of the 4velocity in our universe , vz is the z-component of the 4velocity in our universe and vt is the 4velocity-component in the time dimension in our universe.
dx’=dx     dy’=dy    dz’=dz    dT’=dT/N     dt’=dt/N
Where dx’=dx is the smallest possible length in x-direction in both our universe and the parallel universes , where dy’=dy is the smallest possible length in y-direction in both our universe and the parallel universes , where dz’=dz is the smallest possible length in z-direction in both our universe and the parallel universes , dT’ is the smallest possible own time interval in the parallel universe , dT is the smallest possible own time interval in our universe , dt’ is the smallest possible coordinate time interval in the parallel universe and dt is the smallest possible coordinate time interval in our universe.
The energy of an object that is transfered to hyperspace must be the same after the transfer as before (but strangely enough not during the transfer). W’=W where W is the energy of the object.
W=∭(ρ0U)dxdydz=∭(¤c2)dxdydz
W’=∭(ρ’0U’)dxdydz=∭(¤’c’2)dxdydz
Because W’=W then ¤c2=¤’c’2=¤’N2c2   and     ¤’=¤/N2
m’=∭(¤’)dxdydz=∭(¤/N2)dxdydz=m/N2
m=∭(¤)dxdydz
U’=NU
ρ0U=ρ’0U’=ρ’0NU   ρ’0=ρ0/N
Q’=∭(ρ’0)dxdydz=∭(ρ0/N)dxdydz=Q/N
Q=∭(ρ0)dxdydz
Where m is the mass of an object in our universe , ¤ is the mass-density , Q is the charge of an object and ρ0  is the charge-density in our universe and where m’ is the mass of an object in the parallel universe , ¤’ is the mass-density , Q’ is the charge of an object and ρ’0 is the charge-density in the parallel universe. 
E’=NE   where E’  is the electric field in the parallel 4space and E is the electric field in our 4space. 
E’2=E’x2+E’y2+E’z2+E’ct2         E’=(E’x;E’y;E’z;E’ct)
U=Ux+Uy+Uz+Uct=∫Exdx+∫Eydy+∫Ezdz+∫Ectcdt=∫(d(Uscdt)/(cdT))-∫(d(Axdx)/dT)-∫(d(Aydy)/dT)-∫(d(Azdz)/dT)=vtUs/c+∫(dUs/(cdT))cdt-vxAx-∫(dAx/dT)dx-vyAy-∫(dAy/dT)dy-vzAz-∫(dAz/dT)dz=vtµ0∬(ρ0vt)((dx)2+(dy)2+(dz)2)+µ0∫(d(∬(ρ0vt)((dx)2+(dy)2+(dz)2))/dT)cdt-vxµ0∬jx((dy)2+(dz)2-(cdt)2-µ0∫(d(∬jx((dy)2+(dz)2-(cdt)2))/dT)dx-vyµ0∬jy((dx)2+(dz)2-(cdt)2-µ0∫(d(∬jy((dx)2+(dz)2-(cdt)2))/dT)dy-vzµ0∬jz((dx)2+(dy)2-(cdt)2-µ0∫(d(∬jz((dx)2+(dy)2-(cdt)2))/dT)dz
U’=U’x+U’y+U’z+U’ct=∫E’xdx+∫E’ydy+∫E’zdz+∫E’ctc’dt’=∫(d(U’sc’dt’)/(c’dT’))-∫(d(Axdx)/dT’)-∫(d(Aydy)/dT’)-∫(d(Azdz)/dT’)=v’tU’s/c’+∫(dU’s/(c’dT’))c’dt’-v’xAx-∫(dAx/dT’)dx-v’yAy-∫(dAy/dT’)dy-v’zAz-∫(dAz/dT’)dz=v’tµ0∬(ρ’0v’t)((dx)2+(dy)2+(dz)2)+µ0∫(d(∬(ρ’0v’t)((dx)2+(dy)2+(dz)2))/dT’)c’dt’-v’xµ0∬jx((dy)2+(dz)2-(c’dt’)2-µ0∫(d(∬jx((dy)2+(dz)2-(c’dt’)2))/dT’)dx-v’yµ0∬jy((dx)2+(dz)2-(c’dt’)2-µ0∫(d(∬jy((dx)2+(dz)2-(c’dt’)2))/dT’)dy-vzµ0∬jz((dx)2+(dy)2-(c’dt’)2-µ0∫(d(∬jz((dx)2+(dy)2-(c’dt’)2))/dT’)dz=NU
U’=NU
Where U is the electric potential in our 4space and U’ is the electric potential in the parallel 4space.
µ0=µ’0 the magnetical constant is the same in hyperspace as in our 4space.
c2=1/(ϵ0μ0)         c’2=1/(ϵ’0μ0)    ϵ0=1/(µ0c2)    ϵ’0=1/(µ0c’2)=1/(µ0(Nc)2)=ϵ0/N2     ϵ’0=ϵ0/N2
Where ϵ0 is the electrical constant in our universe and ϵ’0 is the electrical constant in hyperspace.
I is the current in our 4space and I’ is the current in the parallel 4space. 
I=dQ/dT   I’=dQ’/dT’=(dQ/N)/(dT/N)=I
The equations also leads to j’=j and B’=B and ϕ’=ϕ and A’=A where j is the current-density in our 4space ,  j’ is the current-density in the parallel 4space ,  B is the magnetic flux-density in our 4space ,  B’ is the magnetic flux-density in the parallel 4space and ϕ’ is the magnetic flux in the parallel 4space and ϕ is the magnetic flux in our 4space and A’ is the magnetical vector-potential in the parallel 4space and A is the magnetical vector-potential in our 4space.
E2=Ex2+Ey2+Ez2+Ect2      E=(Ex;Ey;Ez;Ect)
Ex=∫(d(Esxcdt)/cdT)-∫(d(Byxdy)/dT)-∫(d(Bzxdz)/dT)=vt2Esx/c+∫(dEsx/(cdT))cdt-(vyByx+∫(dByx/dT)dy)- (vzBzx+∫(dBzx/dT)dz)=vt2μ0∫(ρ0vt)dx+μ0∬(d(ρ0vtdx)/dT)cdt-(vyμ0∫jydx+μ0∬(d(jydx)/dT)dy)-(vzμ0∫jzdx+μ0∬(d(jzdx)/dT)dz)
Ey=∫(d(Esycdt)/cdT)-∫(d(Bxydx)/dT)-∫(d(Bzydz)/dT)=vt2Esy/c+∫(dEsy/(cdT))cdt-(vxBxy+∫(dBxy/dT)dx)- (vzBzy+∫(dBzy/dT)dz)=vt2μ0∫(ρ0vt)dy+μ0∬(d(ρ0vtdy)/dT)cdt-(vxμ0∫jxdy+μ0∬(d(jxdy)/dT)dx)-(vzμ0∫jzdy+μ0∬(d(jzdy)/dT)dz)
Ez=∫(d(Eszcdt)/cdT)-∫(d(Bxzdx)/dT)-∫(d(Byzdy)/dT)=vt2Esz/c+∫(dEsz/(cdT))cdt-(vxBxz+∫(dBxz/dT)dx)- (vyByz+∫(dByz/dT)dy)=vt2μ0∫(ρ0vt)dz+μ0∬(d(ρ0vtdz)/dT)cdt-(vxμ0∫jxdz+μ0∬(d(jxdz)/dT)dx)-(vyμ0∫jydz+μ0∬(d(jydz)/dT)dy)
Ect=∫(d(Bxctdx)/dT)+∫(d(Byctdy/dT) +∫(d(Bzctdz/dT)=vxBxct+∫(dBxct/dT)dx+vyByct+∫(dByct/dT)dy+vzBzct+∫(dBzct/dT)dz=vxμ0∫jxcdt+μ0∬(d(jxcdt)/dT)dx+ vyμ0∫jycdt+μ0∬(d(jycdt)/dT)dy+vzμ0∫jzcdt+μ0∬(d(jzcdt)/dT)dz 
E’x=∫(d(E’sxc’dt’)/c’dT’)-∫(d(Byxdy)/dT’)-∫(d(Bzxdz)/dT’)=v’t2E’sx/c’+∫(dE’sx/(c’dT’))c’dt’-(v’yByx+∫(dByx/dT’)dy)- (v’zBzx+∫(dBzx/dT’)dz)=v’t2μ0∫(ρ’0v’t)dx+μ0∬(d(ρ’0v’tdx)/dT’)c’dt’-(v’yμ0∫jydx+μ0∬(d(jydx)/dT’)dy)-(v’zμ0∫jzdx+μ0∬(d(jzdx)/dT’)dz)=NEx
 
E’y=∫(d(E’syc’dt’)/c’dT’)-∫(d(Bxydx)/dT’)-∫(d(Bzydz)/dT’)=v’t2E’sy/c’+∫(dE’sy/(c’dT’))c’dt’-(v’xBxy+∫(dBxy/dT’)dx)- (v’zBzy+∫(dBzy/dT’)dz)=v’t2μ0∫(ρ’0v’t)dy+μ0∬(d(ρ’0v’tdy)/dT’)c’dt’-(v’xμ0∫jxdy+μ0∬(d(jxdy)/dT’)dx)-(v’zμ0∫jzdy+μ0∬(d(jzdy)/dT’)dz)=NEy
 
E’z=∫(d(E’szc’dt’)/c’dT’)-∫(d(Bxzdx)/dT’)-∫(d(Byzdy)/dT’)=v’t2E’sz/c’+∫(dE’sz/(c’dT’))c’dt’-(v’xBxz+∫(dBxz/dT’)dx)- (v’yByz+∫(dByz/dT’)dy)=v’t2μ0∫(ρ’0v’t)dz+μ0∬(d(ρ’0v’tdz)/dT’)c’dt’-(v’xμ0∫jxdz+μ0∬(d(jxdz)/dT’)dx)-(v’yμ0∫jydz+μ0∬(d(jydz)/dT’)dy)=NEz
 
E’ct=∫(d(Bxctdx)/dT’)+∫(d(Byctdy/dT’) +∫(d(Bzctdz/dT’)=v’xBxct+∫(dBxct/dT’)dx+v’yByct+∫(dByct/dT’)dy+v’zBzct+∫(dBzct/dT’)dz=v’xμ0∫jxc’dt’+μ0∬(d(jxc’dt’)/dT’)dx+ v’yμ0∫jyc’dt’+μ0∬(d(jyc’dt’)/dT’)dy+v’zμ0∫jzc’dt’+μ0∬(d(jzc’dt’)/dT’)dz=NEct
Where E’x is the x-component of the electric field in the parallel 4space , E’y is the y-component of the electric field in the parallel 4space , E’z is the z-component of the electric field in the parallel 4space and E’ct is the electric field component in the time dimension in the parallel 4space.
F’=F where F’ is the force in the parallel 4space and F is the force in our 4space.
 
 
T’=∫dT’=∫(dT/N)=T/N
Where T is te own time in our universe and T’ is the own time in the parallel universe, this also means that ΔT’=ΔT/N where ΔT’ is a certain time interval in hyperspace and ΔT is corresponding time interval in standard space this also leads to the frequensy f*=1/ ΔT’=N/ ΔT=Nf where f* is the frequensy in the parallel universe and f is the frequensy in our universe (that the frequensy in the parallel universe becomes Nf thus an integer( the hyper-factor) times the frequensy in our universe means that many call the hyperspaces for the higher harmonics of reality or the cosmic overtones. Sometimes also the higher vibrations of reality.)
 The 4space metric is localy euclidean where (ds4)2=(cdT)2=(dx)2+(dy)2+(dz)2+(cdt)2         ds4=cdT=(dx;dy;dz;cdt)
and  (ds’4)2=(c’dT’)2=(dx)2+(dy)2+(dz)2+(c’dt’)2 but c’dt’=cdt and c’dT’=cdT so ds’4=ds4
(that the 4 velocity in hyperspace is higher depends on that time intervals dt’ are shorter (dt’=dt/N) than in standard space)
 λ'=λ the wawe-length in hyperspace is the same as in standard space.
F’g=Fg the gravitational force in hyperspace is the same as in standard space.
g’=N2g where g’ is the gravitational field in hyperspace and g is the gravitational field in standard space.
g2=gx2+gy2+gz2+gct2        g=(gx;gy;gz;gct)
gx=(dPxΔU)/(¤dxU0)     gy=(dPyΔU)/(¤dyU0)    gz=(dPzΔU)/(¤dzU0)     gct=(dPctΔU)/(¤cdtU0)
g’2=g’x2+g’y2+g’z2+g’ct2              g’=(g’x;g’y;g’z;g’ct)
g’x=(dPxΔU)/(¤’dxU0)=N2gx     g’y=(dPyΔU)/(¤’dyU0)=N2gy    g’z=(dPzΔU)/(¤’dzU0)=N2gz     g’ct=(dPctΔU)/(¤’c’dt’U0)=N2gct
Where g’x is the x-component of the gravitational field in hyperspace , g’y is y-component of the gravitational field in hyperspace , g’z is the z-component of the gravitational field in hyperspace and g’ct is the gravitational field component in the time dimension in hyperspace.
 
Travel in hyperspace
S3=∫(√(vx2+vy2+vz2))dT=∫vdT
S’3=∫(√(v’x2+v’y2+v’z2))dT=∫v’dT=∫NvdT
Where S3 is the distance that you travel if you only travel trough standard space and S’3 is the distance you travel if you travel trough hyperspace (you can see on the formula that you travel much faster trough hyperspace than trough standard space and thus can get to another place much faster even faster than light).
S4=∫(√(vx2+vy2+vz2+vt2))dT=∫cdT
S’4=∫(√(v’x2+v’y2+v’z2+v’t2))dT=∫c’dT=∫NcdT
Where S4 is the 4distance you travel in standard space and S’4 is the 4distance you travel in hyperspace during the same time interval if you chosed to enter hyperspace.
X=∫vxdT      X’=∫v’xdT=∫NvxdT
Y=∫vydT      Y’=∫v’ydT=∫NvydT
Z=∫vzdT      Z’=∫v’zdT=∫NvzdT
t=∫(vt/c)dT      t’=∫(v’t/c’)dT=∫(Nvt/(Nc))dT=t
Where X is the x-component of the distance traveled for the one that traveled in standard space , X’ is the x-component of the distance traveled for the one that traveled in hyperspace , Y is the y-component of the distance traveled for the one that traveled in standard space , Y’ is the y-component of the distance traveled for the one that traveled in hyperspace , Z is the z-component of the distance traveled for the one that traveled in standard space , Z’ is the z-component of the distance traveled for the one that traveled in hyperspace , t is the coordinate-time-distance that the one that traveled in standard space has traveled and t’ is the coordinate-time-distance that the one that traveled in hyperspace has traveled (of the equation above you see that t=t’ thats why you woulden’t travel faster forwards in time than usual if you would start the hyperdrive when the ship stood still in these case the ship would just enter another dimension and become invisible only to reappear on the same spot when the ship exit hyperspace whitout any spatial travel att all, If you instead have a velocity when you enter hyperspace you would travel N times faster in hyperspace and have traveled N times longer compared whit if you haven’t enter hyperspace. When you later exit hyperspace you have the same velocity as you had when you entered if you haven’t did any accelerations.)
Potential and energy transfer between 4spaces
For transfer to hyperspace and between differen hyperspace levels the following is true: ∑(U/N)=U0 (this formula is strictly true) apparently also the formula ∑Wn=W0 seems to be true even if it is so that only the energy that exists in the lower level is real and that the energy in the higher level becomes real only when all energy has dissappeared in the lower level (it is this that inertial dampeners are using when you sharply can reduce the ships mass by being near the threshold to enter hyperspace, it is also therefore that UFOs can do so sharp manouvers when they and the beings onboard them are almost inertial-less it is also therefore they so easily dissapears and enter hyperspace when it just is to transfer the last part of the potential to get there)(a spaceship is almost inertial-less when it’s near the threshold to next hyperspace level.)
U0 is the background potential of the Aether (the average inner potential of the matter) and is calculated as follows: W0=∑(QU)      ∑(Q(U-U0))=0    
 ∑(Q(U+Uind))=(∑(QU))((U0+Uind)/U0)=W0((U0+Uind)/U0)
+0,65GV≤U0≤+1,1GV (exact value haven’t been measured can possibly be different for different materials) W0 is the normal spacetime energy and Uind is the induced potential.
W0=∭(¤0c2)dxdydz=∭(ρ0U)dxdydz
m0=W0/c2      m’0=W0/c’2=m0/N2
m=W1/c2      m’=WN1/c’2=WN1/(Nc)2
Where m0 is the normal mass for an object in our universe , m’0 is the normal mass for the same object in hyperspace , m is the mass for the object in standard space , m’ is the mass for the object in hyperspace W1 is the energy of the object in standard space and WN1 is the energy of the object in hyperspace(at the transition between different levels WN1 is the energy that exists in the lower level (the only real energy)) ¤0 is the normal mass-density in our 4space and ¤’0= ¤0/N2 is the normal mass-density in hyperspace.
Transition from standard space to hyperspace:
U1=U0+Uind
UN=-NUind  where UN is the potential that have been transfered to hyperspace.
W1=∭(¤c2)dxdydz=∭(¤0c2((U0+Uind)/U0))dxdydz
WN=∭(¤’c’2(UN/(NU0)))dxdydz
WN is the energy that have been transfered to hyperspace (observe that WN becomes real only then W1=0 and if later W1>0 then the ship would exit hyperspace and re-enter standard space)
Transition from lower hyperspace level to higher hyperspace level:
UN1=N1(U0+Uind)
UN2=-N2Uind  where UN2 is the potential that have been tranfered from lower hyperspace level to higher hyperspace level N2>N1
WN1=∭(¤’c’2)dxdydz=∭(¤’0c’2((N1(U0+Uind)/(N1U0)))dxdydz
WN2=∭(¤’c’2(UN2/(N2U0)))dxdydz
WN2 is the energy that have been transfered to the higher hyperspace level (observe that WN2 becomes real only then WN1=0 and if later WN1>0 then the ship would go back to the lower hyperspace level)
Interconnected hyperspace systems
For interconnected hyperspace systems (stargates) the following applies
∑(U/N)=U0 and apparently also ∑Wn=W0(observe that no matter have been tranfered until Utransmitter=0)
Uind1<0           Uind2=-Uind1
Utransmitter=U0+Uind
Ureciever=Uind2=-Uind1
Uhyperspace=-N(Uind1+Uind2)=0
Wtransmitter=∭(¤0c2((U0+Uind1)/U0))dxdydz
Wreciever=∭(¤0c2((Uind2)/U0))dxdydz
Whyperspace=∭(ρ’0Uhyperrymd)dxdydz=0
Utransmitter is the potential at the transmitter(entry gate) , Uhyperspace is the potential in hyperspace
Ureciever is the induced potential at the reciever(exit gate)(the potential that the exit gate have taken from the entry gate trough the hyperspace)
Wtransmitter is the energy at the entry gate and Whyperspace is the energy in the hyperspace and Wreciever is the energy at the exit gate (that becomes real only then Wtransmitter=0 that is when the whole potential have been transfered to the exit gate trough hyperspace and have opened a wormhole between the stargates)
The wormhole is opening only then Wtransmitter=0 and Wreciever=W0 that is when the background potential of the Aether have been fully cancelled at the entry gate(transmitter) and been fully transfered to the exit gate(reciever), If you enter the stargate you would instantly be transported to the other end of the wormhole (exit gate, reciever, the other stargate) the wormholes are unidirectional so it isn’t possible to go back unless you first close the stargate and later let the reciever gate become transmitter and  the transmitter gate become reciever for a new wormhole directed the other way. (observe that Wreciever becomes real only then Wtransmitter=0 and if later Wtransmitter>0 the wormhole will be closed).
This article together whit euclidean 4dimensional electromagnetism and electrogravitation and supplement to these shall make it possible to make science fiction to a reality.
 
Objekt: 7 - 9 av 85
<< 1 | 2 | 3 | 4 | 5 >>